首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Distributionally Robust Stochastic Optimal Power Flow Considering N-1 Security Constraints with renewable
  • 本地全文:下载
  • 作者:Shiyuan Ni ; Guilian Wu ; Zehao Wang
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:261
  • 页码:1-5
  • DOI:10.1051/e3sconf/202126102017
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:This paper proposes a data-driven stochastic optimal power flow model considering the uncertainties of renewable energy sources. The proposed model also focuses on the constraints of reactive voltage, aiming at improving the safety of voltage amplitude and reactive power output at each bus. Using data-driven linearization techniques, we simplified the calculation of system. In addition, Wasserstein ambiguity set was used to describe the uncertainties of renewable energy prediction error distribution, and a robust stochastic optimal power flow model considering N-1 security constraints is established. The simulation results on IEEE-39 system showed the accuracy and effectiveness of the distributionally robust optimization model and the reactive voltage constraint model provided a more stable operation schedule.
国家哲学社会科学文献中心版权所有