摘要:In view of the large demand for new coronary pneumonia covid19 image recognition samples, the recognition accuracy is not ideal. In this paper, a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, small-sample image enhancement and extension are performed on the transformed image, such as staggered transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning. Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images, even with only a small number of CT image samples.