首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Classical and Bayesian inference approaches for the exponentiated discrete Weibull model with censored data and a cure fraction
  • 本地全文:下载
  • 作者:Jorge Alberto Achcar ; Edson Zangiacomi Martinez ; Bruno Caparroz Lopes de Freitas
  • 期刊名称:Pakistan Journal of Statistics and Operation Research
  • 印刷版ISSN:2220-5810
  • 出版年度:2021
  • 卷号:17
  • 期号:2
  • 页码:467-481
  • DOI:10.18187/pjsor.v17i2.3693
  • 语种:English
  • 出版社:College of Statistical and Actuarial Sciences
  • 摘要:In this paper, we introduce maximum likelihood and Bayesian parameter estimation for the exponentiated discrete Weibull (EDW) distribution in presence of randomly right censored data. We also consider the inclusion of a cure fraction in the model. The performance of the maximum likelihood estimation approach is assessed by conducting an extensive simulation study with different sample sizes and different values for the parameters of the EDW distribution. The usefuness of the proposed model is illustrated with two examples considering real data sets.
  • 关键词:maximum likelihood estimation; survival analysis; cure fraction; Bayesian inference; Discrete distributions; Censored data
国家哲学社会科学文献中心版权所有