摘要:Heavy metals are naturally occurring elements, but their various applications have led to their wide circulation in the environment, raising concerns over their latent effects on the environment and human health. Their toxicity depends on numerous factors, including chemical species, concentration of heavy metal ions, environmental factors, etc. Experimental studies on the single or cumulative effects of heavy metals on plants are complex, time consuming and difficult to conduct. An alternative is mathematical modeling, which can include different factors into an integrated system and can predict plant and environmental behavior under multiple stressors. This paper presents a mathematical model that simulates the dependence of temperature, concentration of Zn in the soil and the subsequent bioaccumulation in lettuce (<i>Lactuca sativa </i>L.); respectively, the reaction of lettuce to Zn contamination. The main results consist of three mathematical models, based on systems of ordinary differential equations and checking their predictions with available experimental data. The models are applied to predict an optimal harvest time of lettuce with low concentration of Zn, in identifying the availability of the analyzed species to phytoremediation operations and the possibility of maneuvering certain control factors to reduce or increase the intensity of the bioaccumulation process.