首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Dynamics and Distribution of Marine Synechococcus Abundance and Genotypes during Seasonal Hypoxia in a Coastal Marine Ranch
  • 本地全文:下载
  • 作者:Guihao Li ; Qinqin Song ; Pengfei Zheng
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2021
  • 卷号:9
  • 期号:5
  • 页码:549
  • DOI:10.3390/jmse9050549
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Marine Synechococcus are an ecologically important picocyanobacterial group widely distributed in various oceanic environments. Little is known about the dynamics and distribution of Synechococcus abundance and genotypes during seasonal hypoxia in coastal zones. In this study, an investigation was conducted in a coastal marine ranch along two transects in Muping, Yantai, where hypoxic events (defined here as the dissolved oxygen concentration <3 mg L−1) occurred in the summer of 2015. The hypoxia occurred in the bottom waters from late July and persisted until late August. It was confined at nearshore stations of the two transects, one running across a coastal ranch and the other one outside. During this survey, cell abundance of Synechococcus was determined with flow cytometry, showing great variations ranging from 1 × 104 to 3.0 × 105 cells mL−1, and a bloom of Synechococcus occurred when stratification disappeared and hypoxia faded out outside the ranch. Regression analysis indicated that dissolved oxygen, pH, and inorganic nutrients were the most important abiotic factors in explaining the variation in Synechococcus cell abundance. Diverse genotypes (mostly belonged to the sub-clusters 5.1 and 5.2) were detected using clone library sequencing and terminal restriction fragment length polymorphism analysis of the 16S–23S rRNA internal transcribed spacer region. The richness of genotypes was significantly related to salinity, temperature, silicate, and pH, but not dissolved oxygen. Two environmental factors, temperature and salinity, collectively explained 17% of the variation in Synechococcus genotype assemblage. With the changes in population composition in diverse genotypes, the Synechococcus assemblages survived in the coastal hypoxia event and thrived when hypoxia faded out.
国家哲学社会科学文献中心版权所有