摘要:Green buffer (GB) zones are designed to prevent the spread of air pollutants and odors from industrial complexes (ICs) to residential areas (RAs). We analyzed changes in the concentration of particulate matter (PM) and the number of high PM pollution days for 10 years after the GB was implemented, using the National Atmospheric Environmental Research Stations 2001–2018 dataset. We also performed field measurements of PM<sub>10</sub> and PM<sub>2.5</sub> from February 2018 to January 2019 to analyze the PM concentrations at human breathing height throughout the GB. Before GB implementation (2001–2006), PM<sub>10</sub> in the RA was 9% higher than that in the IC. After GB zone implementation (2013–2018), PM<sub>10</sub> in the RA was 11% lower than that of the IC. Furthermore, the PM concentration in the RA (slope = ∆Concentration/∆Time, −2.09) rapidly decreased compared to that in the IC (slope = −1.02) and the western coastal area (WCA) (slope = −1.55) over the 10-year period. At PM concentrations at human breathing height, PM<sub>10</sub> and PM<sub>2.5</sub> in the RA were lower than those in the IC by 27% and 26%, respectively. After GB implementation, the wind speed was positively correlated but SOx was negatively correlated with the PM reduction rate at a local scale. These results show that there was a reduction of PM during and after GB implementation, implying the need for proper management of GBs and continuous measure of pollutant sources at the green buffers of industrial complexes.