首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Machine Learning Classifier Approach with Gaussian Process, Ensemble boosted Trees, SVM, and Linear Regression for 5G Signal Coverage Mapping
  • 本地全文:下载
  • 作者:Akansha Gupta ; Kamal Ghanshala ; R. C. Joshi
  • 期刊名称:International Journal of Interactive Multimedia and Artificial Intelligence
  • 印刷版ISSN:1989-1660
  • 出版年度:2021
  • 卷号:6
  • 期号:6
  • 页码:156-163
  • DOI:10.9781/ijimai.2021.03.004
  • 语种:English
  • 出版社:ImaI-Software
  • 摘要:This article offers a thorough analysis of the machine learning classifiers approaches for the collected Received Signal Strength Indicator (RSSI) samples which can be applied in predicting propagation loss, used for network planning to achieve maximum coverage. We estimated the RMSE of a machine learning classifier on multivariate RSSI data collected from the cluster of 6 Base Transceiver Stations (BTS) across a hilly terrain of Uttarakhand-India. Variable attributes comprise topology, environment, and forest canopy. Four machine learning classifiers have been investigated to identify the classifier with the least RMSE: Gaussian Process, Ensemble Boosted Tree, SVM, and Linear Regression. Gaussian Process showed the lowest RMSE, R- Squared, MSE, and MAE of 1.96, 0.98, 3.8774, and 1.3202 respectively as compared to other classifiers.
国家哲学社会科学文献中心版权所有