首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Unraveling hidden interactions in complex systems with deep learning
  • 本地全文:下载
  • 作者:Seungwoong Ha ; Hawoong Jeong
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-91878-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Rich phenomena from complex systems have long intrigued researchers, and yet modeling system micro-dynamics and inferring the forms of interaction remain challenging for conventional data-driven approaches, being generally established by scientists with human ingenuity. In this study, we propose AgentNet, a model-free data-driven framework consisting of deep neural networks to reveal and analyze the hidden interactions in complex systems from observed data alone. AgentNet utilizes a graph attention network with novel variable-wise attention to model the interaction between individual agents, and employs various encoders and decoders that can be selectively applied to any desired system. Our model successfully captured a wide variety of simulated complex systems, namely cellular automata (discrete), the Vicsek model (continuous), and active Ornstein–Uhlenbeck particles (non-Markovian) in which, notably, AgentNet’s visualized attention values coincided with the true variable-wise interaction strengths and exhibited collective behavior that was absent in the training data. A demonstration with empirical data from a flock of birds showed that AgentNet could identify hidden interaction ranges exhibited by real birds, which cannot be detected by conventional velocity correlation analysis. We expect our framework to open a novel path to investigating complex systems and to provide insight into general process-driven modeling.
国家哲学社会科学文献中心版权所有