首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Information dynamics in neuromorphic nanowire networks
  • 本地全文:下载
  • 作者:Ruomin Zhu ; Joel Hochstetter ; Alon Loeffler
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-92170-7
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Neuromorphic systems comprised of self-assembled nanowires exhibit a range of neural-like dynamics arising from the interplay of their synapse-like electrical junctions and their complex network topology. Additionally, various information processing tasks have been demonstrated with neuromorphic nanowire networks. Here, we investigate the dynamics of how these unique systems process information through information-theoretic metrics. In particular, Transfer Entropy (TE) and Active Information Storage (AIS) are employed to investigate dynamical information flow and short-term memory in nanowire networks. In addition to finding that the topologically central parts of networks contribute the most to the information flow, our results also reveal TE and AIS are maximized when the networks transitions from a quiescent to an active state. The performance of neuromorphic networks in memory and learning tasks is demonstrated to be dependent on their internal dynamical states as well as topological structure. Optimal performance is found when these networks are pre-initialised to the transition state where TE and AIS are maximal. Furthermore, an optimal range of information processing resources (i.e. connectivity density) is identified for performance. Overall, our results demonstrate information dynamics is a valuable tool to study and benchmark neuromorphic systems.
国家哲学社会科学文献中心版权所有