首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A stochastic quantum program synthesis framework based on Bayesian optimization
  • 本地全文:下载
  • 作者:Yao Xiao ; Shahin Nazarian ; Paul Bogdan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-91035-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian optimization to automatically generate quantum programs from high-level languages subject to certain constraints. We find that stochastic synthesis can comparatively and efficiently generate a program with a lower cost from the high dimensional program space. We also realize that hyperparameters used in stochastic synthesis play a significant role in determining the optimal program. Therefore, BayeSyn utilizes Bayesian optimization to fine-tune such parameters to generate a suitable quantum program.
国家哲学社会科学文献中心版权所有