首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Controllable multichannel acousto-optic modulator and frequency synthesizer enabled by nonlinear MEMS resonator
  • 本地全文:下载
  • 作者:Gayathri Pillai ; Sheng-Shian Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-90248-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Nonlinear physics-based harmonic generators and modulators are critical signal processing technologies for optical and electrical communication. However, most optical modulators lack multi-channel functionality while frequency synthesizers have deficient control of output tones, and they additionally require vacuum, complicated setup, and high-power configurations. Here, we report a piezoelectrically actuated nonlinear Microelectromechanical System (MEMS) based Single-Input-Multiple-Output multi-domain signal processing unit that can simultaneously generate programmable parallel information channels (> 100) in both frequency and spatial domain. This significant number is achieved through the combined electromechanical and material nonlinearity of the Lead Zirconate Titanate thin film while still operating the device in an ambient environment at Complementary-Metal–Oxide–Semiconductor compatible voltages. By electrically detuning the operation point along the nonlinear regime of the resonator, the number of electrical and light-matter interaction signals generated based on higher-order non-Eigen modes can be controlled meticulously. This tunable multichannel generation enabled microdevice is a potential candidate for a wide variety of applications ranging from Radio Frequency communication to quantum photonics with an attractive MEMS-photonics monolithic integration ability.
国家哲学社会科学文献中心版权所有