首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean
  • 本地全文:下载
  • 作者:Oscar Serrano ; Diana Isabel Gómez-López ; Laura Sánchez-Valencia
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-90544-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Seagrass ecosystems rank amongst the most efficient natural carbon sinks on earth, sequestering CO 2 through photosynthesis and storing organic carbon (C org) underneath their soils for millennia and thereby, mitigating climate change. However, estimates of C org stocks and accumulation rates in seagrass meadows (blue carbon) are restricted to few regions, and further information on spatial variability is required to derive robust global estimates. Here we studied soil C org stocks and accumulation rates in seagrass meadows across the Colombian Caribbean. We estimated that Thalassia testudinum meadows store 241 ± 118 Mg C org ha −1 (mean ± SD) in the top 1 m-thick soils, accumulated at rates of 122 ± 62 and 15 ± 7 g C org m −2 year −1 over the last ~ 70 years and up to 2000 years, respectively. The tropical climate of the Caribbean Sea and associated sediment run-off, together with the relatively high primary production of T. testudinum, influencing biotic and abiotic drivers of C org storage linked to seagrass and soil respiration rates, explains their relatively high C org stocks and accumulation rates when compared to other meadows globally. Differences in soil C org storage among Colombian Caribbean regions are largely linked to differences in the relative contribution of C org sources to the soil C org pool (seagrass, algae Halimeda tuna, mangrove and seston) and the content of soil particles < 0.016 mm binding C org and enhancing its preservation. Despite the moderate areal extent of T. testudinum in the Colombian Caribbean (661 km 2), it sequesters around 0.3 Tg CO 2 year −1, which is equivalent to ~ 0.4% of CO 2 emissions from fossil fuels in Colombia. This study adds data from a new region to a growing dataset on seagrass blue carbon and further explores differences in meadow C org storage based on biotic and abiotic environmental factors, while providing the basis for the implementation of seagrass blue carbon strategies in Colombia.
国家哲学社会科学文献中心版权所有