期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:11
页码:3217-3222
DOI:10.1073/pnas.1501548112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceAlthough impressive progress in solution-processed metal-oxide (MO) electronics has been achieved, fundamental science challenges remain concerning whether solution-processed MO materials and particularly technologically relevant, indium-gallium-tin-oxide (IGZO), can achieve efficient and stable charge transport characteristics when processed at low temperatures for short times and how IGZO film density, porosity, carrier mobility, and charge trapping can be manipulated. Here, we report a coating technique, spray-combustion synthesis, and demonstrate IGZO semiconductor thickness, densification, nanoporosity, electron mobility, trap densities, and bias stress stability approaching the quality of sputtered films. Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.