期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:11
页码:3481-3486
DOI:10.1073/pnas.1422041112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceA fundamental tenet of life-history theory is that reproduction and longevity trade off against one another. Experiments on invertebrates show that, rather than competing for limiting resources, reproduction and lifespan are optimized on different dietary macronutrient compositions. In mice, studies have yet to establish the relationship between macronutrient balance, reproduction, and lifespan. We evaluated the effects of macronutrients and energy on lifespan and reproductive function. Indicators of reproductive function (uterine mass, ovarian follicle number, testes mass, epididymal sperm counts) were optimized by high protein (P), low carbohydrate (C) diets whereas lifespan was greatest on low P:C diets. Corpora lutea and estrous cycling were higher in females on lower P:C diets. Macronutrient balance has profound and opposing effects on reproduction and longevity. In invertebrates, reproductive output and lifespan are profoundly impacted by dietary macronutrient balance, with these traits achieving their maxima on different diet compositions, giving the appearance of a resource-based tradeoff between reproduction and longevity. For the first time in a mammal, to our knowledge, we evaluate the effects of dietary protein (P), carbohydrate (C), fat (F), and energy (E) on lifespan and reproductive function in aging male and female mice. We show that, as in invertebrates, the balance of macronutrients has marked and largely opposing effects on reproductive and longevity outcomes. Mice were provided ad libitum access to one of 25 diets differing in P, C, F, and E content, with reproductive outcomes assessed at 15 months. An optimal balance of macronutrients exists for reproductive function, which, for most measures, differs from the diets that optimize lifespan, and this response differs with sex. Maximal longevity was achieved on diets containing a P:C ratio of 1:13 in males and 1:11 for females. Diets that optimized testes mass and epididymal sperm counts (indicators of gamete production) contained a higher P:C ratio (1:1) than those that maximized lifespan. In females, uterine mass (an indicator of estrogenic activity) was also greatest on high P:C diets (1:1) whereas ovarian follicle number was greatest on P:C 3:1 associated with high-F intakes. By contrast, estrous cycling was more likely in mice on lower P:C (1:8), and the number of corpora lutea, indicative of recent ovulations, was greatest on P:C similar to those supporting greatest longevity (1:11).