首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis
  • 本地全文:下载
  • 作者:Xiangjun Zhou ; Ralf Welsch ; Yong Yang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:11
  • 页码:3558-3563
  • DOI:10.1073/pnas.1420831112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceCarotenoids are indispensable to plants and humans. Despite significant achievements in carotenoid research, we still lack the fundamental knowledge of the regulatory mechanisms underlying carotenogenesis in plants. Phytoene synthase (PSY) and ORANGE (OR) are the two key proteins for carotenoid biosynthesis and accumulation in plastids. This study shows that OR family proteins interact directly with PSY and function as the major regulators of active PSY protein abundance in mediating carotenoid biosynthesis. The findings establish posttranscriptional regulation of PSY as a novel way to control carotenoid biosynthesis in plants and provide strategies for crop nutritional quality improvement. Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in the carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control carotenoid biosynthesis and accumulation in plants. However, little is known about the mechanisms underlying their posttranscriptional regulation. Here we report that PSY and OR family proteins [Arabidopsis thaliana OR (AtOR) and AtOR-like] physically interacted with each other in plastids. We found that alteration of OR expression in Arabidopsis exerted minimal effect on PSY transcript abundance. However, overexpression of AtOR significantly increased the amount of enzymatically active PSY, whereas an ator ator-like double mutant exhibited a dramatically reduced PSY level. The results indicate that the OR proteins serve as the major posttranscriptional regulators of PSY. The ator or ator-like single mutant had little effect on PSY protein levels, which involves a compensatory mechanism and suggests partial functional redundancy. In addition, modification of PSY expression resulted in altered AtOR protein levels, corroborating a mutual regulation of PSY and OR. Carotenoid content showed a correlated change with OR-mediated PSY level, demonstrating the function of OR in controlling carotenoid biosynthesis by regulating PSY. Our findings reveal a novel mechanism by which carotenoid biosynthesis is controlled via posttranscriptional regulation of PSY in plants.
  • 关键词:carotenoid ; phytoene synthase ; Arabidopsis ; OR ; posttranscriptional regulation
国家哲学社会科学文献中心版权所有