标题:Validation of mathematical model with phosphate activation effect by batch ( R)-phenylacetylcarbinol biotransformation process utilizing Candida tropicalis pyruvate decarboxylase in phosphate buffer
摘要:The (
R)-phenylacetylcarbinol (PAC) batch biotransformation kinetics for partially purified
Candida tropicalis TISTR 5350 pyruvate decarboxylase (PDC) were determined to validate a comprehensive mathematical model in 250 mL scale with 250 mM phosphate buffer/pH 7.0. PDC could convert initial 100/120 mM benzaldehyde/pyruvate substrates to the statistical significantly highest (
p ≤ 0.05) maximum PAC concentration (95.8 ± 0.1 mM) and production rate (0.639 ± 0.001 mM min
−1). A parameter search strategy aimed at minimizing overall residual sum of square (RSS
T
) based on a system of six ordinary differential equations was applied to PAC biotransformation profiles with initial benzaldehyde/pyruvate concentration of 100/120 and 30/36 mM. Ten important biotransformation kinetic parameters were then elucidated including the zeroth order activation rate constant due to phosphate buffer species (
k
a
) of (9.38 ± < 0.01) × 10
–6% relative PDC activity min
−1 mM
−1. The validation of this model to independent biotransformation kinetics with initial benzaldehyde/pyruvate concentration of 50/60 mM resulted in relatively good fitting with RSS
T
, mean sum of square error (MSE), and coefficient of determination (R
2) values of 662, 17.4, and 0.9863, respectively.