首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Probing an AI regression model for hand bone age determination using gradient-based saliency mapping
  • 本地全文:下载
  • 作者:Zhiyue J. Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-90157-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Understanding how a neural network makes decisions holds significant value for users. For this reason, gradient-based saliency mapping was tested on an artificial intelligence (AI) regression model for determining hand bone age from X-ray radiographs. The partial derivative (PD) of the inferred age with respect to input image intensity at each pixel served as a saliency marker to find sensitive areas contributing to the outcome. The mean of the absolute PD values was calculated for five anatomical regions of interest, and one hundred test images were evaluated with this procedure. The PD maps suggested that the AI model employed a holistic approach in determining hand bone age, with the wrist area being the most important at early ages. However, this importance decreased with increasing age. The middle section of the metacarpal bones was the least important area for bone age determination. The muscular region between the first and second metacarpal bones also exhibited high PD values but contained no bone age information, suggesting a region of vulnerability in age determination. An end-to-end gradient-based saliency map can be obtained from a black box regression AI model and provide insight into how the model makes decisions.
国家哲学社会科学文献中心版权所有