首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Dynamic reorganization of human resting-state networks during visuospatial attention
  • 本地全文:下载
  • 作者:Sara Spadone ; Stefania Della Penna ; Carlo Sestieri
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:26
  • 页码:8112-8117
  • DOI:10.1073/pnas.1415439112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceThe brain is never at rest, and patterns of ongoing correlated activity have been found to resemble patterns during active behavior. A fundamental problem in neuroscience concerns the relationship between spontaneous and task-driven activity. During a demanding task that requires selective attention to sensory stimuli, correlated patterns of spontaneous (rest) activity are generally preserved. However, specific changes in synchronization occur within and between networks that correlate with behavioral performance. These results indicate that attention modifies spontaneous activity patterns in support of task performance. Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN[->]VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.
  • 关键词:functional connectivity ; directional connectivity ; resting-state networks ; attention networks ; task-evoked activity
国家哲学社会科学文献中心版权所有