首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Proper closed-loop specifications for data-driven model-reference control
  • 本地全文:下载
  • 作者:Valentina Breschi ; Simone Formentin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:9
  • 页码:46-51
  • DOI:10.1016/j.ifacol.2021.06.062
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn control applications where finding a model of the plant is costly and time consuming, direct data-driven approaches represent a valid alternative for the design of model reference controllers. However, the selection of a proper reference model within a model-free setting is known to be a critical task, as such a model typically plays the role of a hyperparameter. In this work, we extend the existing theory so as to compute both a reference model and the corresponding optimal controller parameters from data to satisfy given behavioral bounds on the desired closed-loop performance. The effectiveness of the proposed approach is illustrated on a benchmark simulation example.
  • 关键词:KeywordsData-driven controlmodel reference controlbayesian optimization
国家哲学社会科学文献中心版权所有