首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Estimation of Smooth Functionals of Location Parameter in Gaussian and Poincaré Random Shift Models
  • 其他标题:Estimation of Smooth functionals
  • 本地全文:下载
  • 作者:Vladimir Koltchinskii ; Mayya Zhilova
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2021
  • 卷号:83
  • 期号:2
  • 页码:569-596
  • DOI:10.1007/s13171-020-00232-1
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:LetEbe a separable Banach space and letf:E↦ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:E\mapsto {\mathbb {R}}$\end{document}be a smooth functional. We discuss a problem of estimation off(??) based on an observationX=??+ξ, where??∈Eis an unknown parameter andξis a mean zero random noise, or based onni.i.d. observations from the same random shift model. We develop estimators off(??) with sharp mean squared error rates depending on the degree of smoothness offfor random shift models with distribution of the noiseξsatisfying Poincaré type inequalities (in particular, for some log-concave distributions). We show that for sufficiently smooth functionalsfthese estimators are asymptotically normal with a parametric convergence rate. This is done both in the case of known distribution of the noise and in the case when the distribution of the noise is Gaussian with covariance being an unknown nuisance parameter.
国家哲学社会科学文献中心版权所有