首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:A Pair of TESS Planets Spanning the Radius Valley around the Nearby Mid-M Dwarf LTT 3780
  • 本地全文:下载
  • 作者:Ryan Cloutier ; Jason D.Eastman ; Joseph E.Rodriguez
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2020
  • 卷号:160
  • 期号:1
  • 页码:1-21
  • DOI:10.3847/1538-3881/ab91c2
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V = 13.07, Ks = 8.204, Rs = 0.374 R⊙, Ms = 0.401 M⊙, d = 22 pc). The two planet candidates are identified in a single Transiting Exoplanet Survey Satellite sector and validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of Pb = 0.77, Pc = 12.25 days and sizes rp,b = 1.33 ± 0.07, rp,c = 2.30 ± 0.16 R⊕, the two planets span the radius valley in period–radius space around low-mass stars, thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N, we measure planet masses of ${m}_{p,b}={2.62}_{-0.46}^{+0.48}$ and ${m}_{p,c}={8.6}_{-1.3}^{+1.6}$ M⊕, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and core-powered mass-loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley.
  • 关键词:Radial velocity (1332);M dwarf stars (982);Exoplanet systems (484); Transit photometry (1709)
国家哲学社会科学文献中心版权所有