首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Dimensionality Reduction of SDSS Spectra with Variational Autoencoders
  • 本地全文:下载
  • 作者:Stephen K.N.Portillo ; John K.Parejko ; Jorge R.Vergara
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2020
  • 卷号:160
  • 期号:1
  • 页码:1-17
  • DOI:10.3847/1538-3881/ab9644
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:High-resolution galaxy spectra contain much information about galactic physics, but the high dimensionality of these spectra makes it difficult to fully utilize the information they contain. We apply variational autoencoders (VAEs), a nonlinear dimensionality reduction technique, to a sample of spectra from the Sloan Digital Sky Survey (SDSS). In contrast to principal component analysis (PCA), a widely used technique, VAEs can capture nonlinear relationships between latent parameters and the data. We find that a VAE can reconstruct the SDSS spectra well with only six latent parameters, outperforming PCA with the same number of components. Different galaxy classes are naturally separated in this latent space, without class labels having been given to the VAE. The VAE latent space is interpretable because the VAE can be used to make synthetic spectra at any point in latent space. For example, making synthetic spectra along tracks in latent space yields sequences of realistic spectra that interpolate between two different types of galaxies. Using the latent space to find outliers may yield interesting spectra: in our small sample, we immediately find unusual data artifacts and stars misclassified as galaxies. In this exploratory work, we show that VAEs create compact, interpretable latent spaces that capture nonlinear features of the data. While a VAE takes substantial time to train (≈1 day for 48,000 spectra), once trained, VAEs can enable the fast exploration of large astronomical data sets.
  • 关键词:Galaxies (573);Galaxy classification systems (582);Astroinformatics (78);Neural networks (1933);Dimensionality reduction (1943);Spectroscopy (1558)
国家哲学社会科学文献中心版权所有