首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
  • 本地全文:下载
  • 作者:Rustama ; Koredianto Usman ; Mudyawati Kamaruddin
  • 期刊名称:Acta Polytechnica
  • 印刷版ISSN:1210-2709
  • 电子版ISSN:1805-2363
  • 出版年度:2021
  • 卷号:61
  • 期号:2
  • 页码:364-377
  • DOI:10.14311/AP.2021.61.0364
  • 语种:English
  • 出版社:Czech Technical University in Prague
  • 摘要:A possibilistic fuzzy c-means (PFCM) algorithm is a reliable algorithm proposed to deal with the weaknesses associated with handling noise sensitivity and coincidence clusters in fuzzy c-means (FCM) and possibilistic c-means (PCM). However, the PFCM algorithm is only applicable to complete data sets. Therefore, this research modified the PFCM for clustering incomplete data sets to OCSPFCM and NPSPFCM with the performance evaluated based on three aspects, 1) accuracy percentage, 2) the number of iterations, and 3) centroid errors. The results showed that the NPSPFCM outperforms the OCSPFCM with missing values ranging from 5% − 30% for all experimental data sets. Furthermore, both algorithms provide average accuracies between 97.75%−78.98% and 98.86%−92.49%, respectively.
  • 关键词:Incomplete data;fuzzy clustering;possibilistic clustering;missing values imputation
国家哲学社会科学文献中心版权所有