首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Forecasting cryptocurrency prices time series using machine learning approach
  • 本地全文:下载
  • 作者:Vasily Derbentsev ; Natalia Datsenko ; Olga Stepanenko
  • 期刊名称:SHS Web of Conferences
  • 印刷版ISSN:2416-5182
  • 电子版ISSN:2261-2424
  • 出版年度:2019
  • 卷号:65
  • 页码:1-7
  • DOI:10.1051/shsconf/20196502001
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:This paper describes the construction of the short-term forecasting model of cryptocurrencies’ prices using machine learning approach. The modified model of Binary Auto Regressive Tree (BART) is adapted from the standard models of regression trees and the data of the time series. BART combines the classic algorithm classification and regression trees (C&RT) and autoregressive models ARIMA. Using the BART model, we made a short-term forecast (from 5 to 30 days) for the 3 most capitalized cryptocurrencies: Bitcoin, Ethereum and Ripple. We found that the proposed approach was more accurate than the ARIMA-ARFIMA models in forecasting cryptocurrencies time series both in the periods of slow rising (falling) and in the periods of transition dynamics (change of trend).
国家哲学社会科学文献中心版权所有