首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Quantifying superspreading for COVID-19 using Poisson mixture distributions
  • 本地全文:下载
  • 作者:Cécile Kremer ; Andrea Torneri ; Sien Boesmans
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-93578-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The number of secondary cases, i.e. the number of new infections generated by an infectious individual, is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the distribution of the number of secondary cases is skewed and often modeled using a negative binomial distribution. However, this may not always be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the mean and variance of this distribution when the data generating distribution is different from the one used for inference. We also analyze COVID-19 data from Hong Kong, India, and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, \documentclass[12pt
国家哲学社会科学文献中心版权所有