首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Machine learning application for the prediction of SARS-CoV-2 infection using blood tests and chest radiograph
  • 本地全文:下载
  • 作者:Richard Du ; Efstratios D. Tsougenis ; Joshua W. K. Ho
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-93719-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Triaging and prioritising patients for RT-PCR test had been essential in the management of COVID-19 in resource-scarce countries. In this study, we applied machine learning (ML) to the task of detection of SARS-CoV-2 infection using basic laboratory markers. We performed the statistical analysis and trained an ML model on a retrospective cohort of 5148 patients from 24 hospitals in Hong Kong to classify COVID-19 and other aetiology of pneumonia. We validated the model on three temporal validation sets from different waves of infection in Hong Kong. For predicting SARS-CoV-2 infection, the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets (AUC: 89.9–95.8%; Sensitivity: 55.5–77.8%; Specificity: 91.5–98.3%). When used in adjunction with radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate specificity. Our study showed that machine learning model based on readily available laboratory markers could achieve high accuracy in predicting SARS-CoV-2 infection.
国家哲学社会科学文献中心版权所有