首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Transmitting silks of maize have a complex and dynamic microbiome
  • 本地全文:下载
  • 作者:Eman M. Khalaf ; Anuja Shrestha ; Jeffrey Rinne
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-92648-4
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum ( Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/ Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7–11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15–26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7–25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
国家哲学社会科学文献中心版权所有