首页    期刊浏览 2024年09月14日 星期六
登录注册

文章基本信息

  • 标题:Preliminary Assessment of Carbon and Nitrogen Sequestration Potential of Wildfire-Derived Sediments Stored by Erosion Control Structures in Forest Ecosystems, Southwest USA
  • 本地全文:下载
  • 作者:James B Callegary ; Laura M Norman ; Christopher J Eastoe
  • 期刊名称:Air, Soil and Water Research
  • 电子版ISSN:1178-6221
  • 出版年度:2021
  • 卷号:14
  • DOI:10.1177/11786221211001768
  • 语种:English
  • 出版社:Libertas Academica
  • 摘要:The role of pyrogenic carbon (PyC) in the global carbon cycle is still incompletely characterized. Much work has been done to characterize PyC on landforms and in soils where it originates or in “terminal” reservoirs such as marine sediments. Less is known about intermediate reservoirs such as streams and rivers, and few studies have characterized hillslope and in-stream erosion control structures (ECS) designed to capture soils and sediments destabilized by wildfire. In this preliminary study, organic carbon (OC), total nitrogen (N), and stable isotope parameters, δ 13 C and δ 15 N, were compared to assess opportunities for carbon and nitrogen sequestration in postwildfire sediments (fluvents) deposited upgradient of ECS in ephemeral- and intermittent-stream channels. The variability of OC, N, δ 13 C, and δ 15 N were analyzed in conjunction with fire history, age of captured sediments, topographic position, and land cover. Comparison of samples in 2 watersheds indicates higher OC and N in ECS with more recently captured sediments located downstream of areas with higher burn severity. This is likely a consequence of (1) higher burn severity causing greater runoff, erosion, and transport of OC (organic matter) to ECS and (2) greater cumulative loss of OC and N in older sediments stored behind older ECS. In addition, C/N, δ 13 C, and δ 15 N results suggest that organic matter in sediments stored at older ECS are enriched in microbially processed biomass relative to those at newer ECS. We conservatively estimated the potential mean annual capture of OC by ECS, using values from the watershed with lower levels of OC, to be 3 to 4 metric tons, with a total potential storage of 293 to 368 metric tons in a watershed of 7.7 km 2 and total area of 2000 ECS estimated at 2.6 ha (203-255 metric tons/ha). We extrapolated the OC results to the regional level (southwest USA) to estimate the potential for carbon sequestration using these practices. We estimated a potential of 0.01 Pg, which is significant in terms of ecosystem services and regional efforts to promote carbon storage.
国家哲学社会科学文献中心版权所有