期刊名称:The Baltic Journal of Road and Bridge Engineering
印刷版ISSN:1822-427X
出版年度:2019
卷号:14
期号:1
页码:58-79
DOI:10.7250/bjrbe.2019-14.433
语种:English
出版社:Vilnius Gediminas Technical University
摘要:Artificial Neural Networks represent useful tools for several engineering issues. Although they were adopted in several pavement-engineering problems for performance evaluation, their application on pavement structural performance evaluation appears to be remarkable. It is conceivable that defining a proper Artificial Neural Network for estimating structural performance in asphalt pavements from measurements performed through quick and economic surveys produces significant savings for road agencies and improves maintenance planning. However, the architecture of such an Artificial Neural Network must be optimised, to improve the final accuracy and provide a reliable technique for enriching decision-making tools. In this paper, the influence on the final quality of different features conditioning the network architecture has been examined, for maximising the resulting quality and, consequently, the final benefits of the methodology. In particular, input factor quality (structural, traffic, climatic), “homogeneity” of training data records and the actual net topology have been investigated. Finally, these results further prove the approach efficiency, for improving Pavement Management Systems and reducing deflection survey frequency, with remarkable savings for road agencies.