摘要:Today, most of the electricity produced throughout the world is from steam power plants. However, electricity is being produced by some other power generation sources such as hydropower, gas power, bio-gas power, solar cells, etc. One newly developed method of electricity generation is the Magneto hydro dynamic power plant. This paper deals with steam cycles used in power plants. Thermodynamic analysis of the Rankine cycle has been undertaken to enhance the efficiency and reliability of steam power plants. The thermodynamic deviations resulting in non-ideal or irreversible functioning of various steam power plant components have been identified. A comparative study between the Carnot cycle and Rankine cycle efficiency has been analyzed resulting in the introduction of regeneration in the Rankine cycle. Factors affecting efficiency of the Rankine cycle have been identified and analyzed for improved working of thermal power plants.
其他摘要:Today, most of the electricity produced throughout the world is from steam power plants. However, electricity is being produced by some other power generation sources such as hydropower, gas power, bio-gas power, solar cells, etc. One newly developed method of electricity generation is the Magneto hydro dynamic power plant. This paper deals with steam cycles used in power plants. Thermodynamic analysis of the Rankine cycle has been undertaken to enhance the efficiency and reliability of steam power plants. The thermodynamic deviations resulting in non-ideal or irreversible functioning of various steam power plant components have been identified. A comparative study between the Carnot cycle and Rankine cycle efficiency has been analyzed resulting in the introduction of regeneration in the Rankine cycle. Factors affecting efficiency of the Rankine cycle have been identified and analyzed for improved working of thermal power plants.
其他关键词:Rankine cycle;steam-turbine;efficiency;Feed Water Heater (FWH);irreversibility;reheat cycle;regeneration;condensers