首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Measurement uncertainty assessment for virtual assembly
  • 本地全文:下载
  • 作者:M. Kaufmann ; I. Effenberger ; M. F. Huber
  • 期刊名称:Journal of Sensors and Sensor Systems
  • 印刷版ISSN:2194-8771
  • 电子版ISSN:2194-878X
  • 出版年度:2021
  • 卷号:10
  • 期号:2
  • 页码:101-108
  • DOI:10.5194/jsss-10-101-2021
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Abstract. Virtual assembly (VA) is a method for datum definition and quality prediction of assemblies considering local form deviations of relevant geometries. Point clouds of measured objects are registered in order torecreate the objects’ hypothetical physical assembly state. By VA, the geometrical verification becomes moreaccurate and, thus, increasingly function oriented. The VA algorithm is a nonlinear, constrained derivate of theGaussian best fit algorithm, where outlier points strongly influence the registration result. In order to assessthe robustness of the developed algorithm, the propagation of measurement uncertainties through the nonlineartransformation due to VA is studied. The work compares selected propagation methods distinguished from theirlevels of abstraction. The results reveal larger propagated uncertainties by VA compared to the unconstrainedGaussian best fit.
国家哲学社会科学文献中心版权所有