首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:ACCURATE VEHICLE SPEED ESTIMATION FROM MONOCULAR CAMERA FOOTAGE
  • 本地全文:下载
  • 作者:D. Bell ; W. Xiao ; P. James
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2020
  • 卷号:V-2-2020
  • 页码:419-426
  • DOI:10.5194/isprs-annals-V-2-2020-419-2020
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:A workflow is devised in this paper by which vehicle speeds are estimated semi-automatically via fixed DSLR camera. Deep learning algorithm YOLOv2 was used for vehicle detection, while Simple Online Realtime Tracking (SORT) algorithm enabled for tracking of vehicles. Perspective projection and scale factor were dealt with by remotely mapping corresponding image and real-world coordinates through a homography. The ensuing transformation of camera footage to British National Grid Coordinate System, allowed for the derivation of real-world distances on the planar road surface, and subsequent simultaneous vehicle speed estimations. As monitoring took place in a heavily urbanised environment, where vehicles frequently change speed, estimations were determined consecutively between frames. Speed estimations were validated against a reference dataset containing precise trajectories from a GNSS and IMU equipped vehicle platform. Estimations achieved an average root mean square error and mean absolute percentage error of 0.625 m/s and 20.922 % respectively. The robustness of the method was tested in a real-world context and environmental conditions.
国家哲学社会科学文献中心版权所有