首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:INFRASTRUCTURE DEGRADATION AND POST-DISASTER DAMAGE DETECTION USING ANOMALY DETECTING GENERATIVE ADVERSARIAL NETWORKS
  • 本地全文:下载
  • 作者:S. M. Tilon ; F. Nex ; D. Duarte
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2020
  • 卷号:V-2-2020
  • 页码:573-582
  • DOI:10.5194/isprs-annals-V-2-2020-573-2020
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads.
国家哲学社会科学文献中心版权所有