摘要:After an earthquake, faults can recover strength through fault healing, but the mechanisms responsible are not well understood. Seismic slip may induce sintering, a bonding process between solid particles in contact under high temperatures without melting, which could produce a fault rock with elevated strength and chemical stability. Here we present results from electron microscope analyses that show a typical sintered structure in a black disk-shaped rock from the Chelungpu fault, Taiwan. This structure is experimentally reproducible in simulated fault material, prepared from the local host-rock, by heating at 800-900 C. Through thermal and kinetic analyses of experimental materials, we show that sintering is an exothermic process which can generate energy to enhance post-slip thermochemical reactions in the fault. We propose that sintering substantially contributes to earthquake energetics and fault healing and that its occurrence can be a useful indicator of past seismic slip. Earthquake-induced sintering of fault rocks may enhance fault healing processes in the period immediately after seismic slip, according to observations of natural and experimental samples.