摘要:Multiple lines of evidence indicate an active hydrogeological history of Mars and chemolithoautotrophy-suited environments within its Noachian terrains. As a result, one of the primary aims of upcoming missions to Mars is to search for signs of ancient life. Here we report on laboratory-scaled microbially assisted chemolithoautotrophic biotransformation of the Noachian Martian breccia Northwest Africa (NWA) 7034 composed of ancient (~4.5 Gyr old) crustal materials from Mars. Nanoanalytical hyperspectral analysis provides clues for the trafficking and distribution of meteorite inorganic constituents in the microbial cell. We decipher biomineralization patterns associated with the biotransformation and reveal microbial nanometer-sized lithologies located inside the cell and on its outer surface layer. These investigations provide an opportunity to trace the putative bioalteration processes of the Martian crust and to assess the potential biogenicity of Martian materials. Terrestrial chemolithotrophic microbes living on Martian crustal material produce distinct biosignatures which could be detected by future missions searching for evidence of past life, according to experiments on a Noachian Martian meteorite.