首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:3D INDOOR MAPPING WITH THE MICROSOFT HOLOLENS: QUALITATIVE AND QUANTITATIVE EVALUATION BY MEANS OF GEOMETRIC FEATURES
  • 本地全文:下载
  • 作者:M. Weinmann ; M. A. Jäger ; S. Wursthorn
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2020
  • 卷号:V-1-2020
  • 页码:165-172
  • DOI:10.5194/isprs-annals-V-1-2020-165-2020
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:3D indoor mapping and scene understanding have seen tremendous progress in recent years due to the rapid development of sensor systems, reconstruction techniques and semantic segmentation approaches. However, the quality of the acquired data strongly influences the accuracy of both reconstruction and segmentation. In this paper, we direct our attention to the evaluation of the mapping capabilities of the Microsoft HoloLens in comparison to high-quality TLS systems with respect to 3D indoor mapping, feature extraction and semantic segmentation. We demonstrate how a set of rather interpretable low-level geometric features and the resulting semantic segmentation achieved with a Random Forest classifier applied on these features are affected by the quality of the acquired data. The achieved results indicate that, while allowing for a fast acquisition of room geometries, the HoloLens provides data with sufficient accuracy for a wide range of applications.
国家哲学社会科学文献中心版权所有