期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2020
卷号:V-1-2020
页码:343-350
DOI:10.5194/isprs-annals-V-1-2020-343-2020
语种:English
出版社:Copernicus Publications
摘要:Objects follow designated path on maps, such as vehicles travelling on a road. This observation signifies topological representation of objects’ motion on the map. Considering the position of object is unknown initially, as it traverses the map by moving and turning, the spatial uncertainty of its whereabouts reduces to a single location as the motion trajectory would fit only to a certain map trajectory. Inspired by this observation, we propose a novel end-to-end localization approach based on topological maps that exploits the object motion and learning the map using an recurrent neural network (RNN) model. The core of the proposed method is to learn potential motion patterns from the map and perform trajectory classification in the map’s edge-space. Two different trajectory representations, namely angle representation and augmented angle representation (incorporates distance traversed) are considered and an RNN is trained from the map for each representation to compare their performances. The localization accuracy in the tested map for the angle and augmented angle representations are 90.43% and 96.22% respectively. The results from the actual visual-inertial odometry have shown that the proposed approach is able to learn the map and localize objects based on their motion.