期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2020
卷号:V-2-2020
页码:475-482
DOI:10.5194/isprs-annals-V-2-2020-475-2020
语种:English
出版社:Copernicus Publications
摘要:The performance of semantic segmentation in high-resolution aerial imagery has been improved rapidly through the introduction of deep fully convolutional neural network (FCN). However, due to the complexity of object shapes and sizes, the labeling accuracy of small-sized objects and object boundaries still need to be improved. In this paper, we propose a neighboring pixel affinity loss (NPALoss) to improve the segmentation performance of these hard pixels. Specifically, we address the issues of how to determine the classifying difficulty of one pixel and how to get the suitable weight margin between well-classified pixels and hard pixels. Firstly, we convert the first problem into a problem that the pixel categories in the neighborhood are the same or different. Based on this idea, we build a neighboring pixel affinity map by counting the pixel-pair relationships for each pixel in the search region. Secondly, we investigate different weight transformation strategies for the affinity map to explore the suitable weight margin and avoid gradient overflow. The logarithm compression strategy is better than the normalization strategy, especially the common logarithm. Finally, combining the affinity map and logarithm compression strategy, we build NPALoss to adaptively assign different weights for each pixel. Comparative experiments are conducted on the ISPRS Vaihingen dataset and several commonly-used state-of-the-art networks. We demonstrate that our proposed approach can achieve promising results.