首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:DATA PROCESSING ARCHITECTURES FOR MONITORING FLOODS USING SENTINEL-1
  • 本地全文:下载
  • 作者:W. Wagner ; V. Freeman ; S. Cao
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2020
  • 卷号:V-3-2020
  • 页码:641-648
  • DOI:10.5194/isprs-annals-V-3-2020-641-2020
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Synthetic Aperture Radar (SAR) images acquired by Earth observation satellites often constitute the only source of information for monitoring the progression of flood events over larger regions. Particularly attractive are the SAR data acquired by the Copernicus Sentinel-1 satellites because they are free and open, and combine a short revisit time with a good spatial and radiometric resolution. In this contribution, we discuss how a Sentinel-1 data processing system should be designed to optimally benefit from the dense Sentinel-1 time series and advanced algorithms such as change detection or machine learning methods. This was one of the questions addressed by an expert group tasked by the Joint Research Centre of the European Commission to investigate the feasibility of an automated, global, satellite-based flood monitoring product for the Copernicus Emergency Management Service. Drawing from the expert group report, we distinguish three broad categories of data processing architectures, namely single-image, dual-image, and data cube processing architectures. While the latter architecture is the most demanding in terms of large storage and compute capacities, it is also the most promising to derive high-quality Sentinel-1 flood maps comprised not just of the flood mask but also of data fields describing the retrieval uncertainty and masks showing where Sentinel-1 cannot detect floods due to physical reasons. Therefore, we recommend to use data cube processing architectures and showcase the use of the Austrian Data Cube for monitoring a small-scale flood event that occurred in Austria in November 2019.
国家哲学社会科学文献中心版权所有