期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2020
卷号:V-3-2020
页码:609-615
DOI:10.5194/isprs-annals-V-3-2020-609-2020
语种:English
出版社:Copernicus Publications
摘要:Flood is one of the most damaging natural hazards in urban areas in many places around the world as well as the city of Fredericton, New Brunswick, Canada. Recently, Fredericton has been flooded in two consecutive years in 2018 and 2019. Due to the complicated behaviour of water when a river overflows its bank, estimating the flood extent is challenging. The issue gets even more challenging when several different factors are affecting the water flow, like the land texture or the surface flatness, with varying degrees of intensity. Recently, machine learning algorithms and statistical methods are being used in many research studies for generating flood susceptibility maps using topographical, hydrological, and geological conditioning factors. One of the major issues that researchers have been facing is the complexity and the number of features required to input in a machine-learning algorithm to produce acceptable results. In this research, we used Random Forest to model the 2018 flood in Fredericton and analyzed the effect of several combinations of 12 different flood conditioning factors. The factors were tested against a Sentinel-2 optical satellite image available around the flood peak day. The highest accuracy was obtained using only 5 factors namely, altitude, slope, aspect, distance from the river, and land-use/cover with 97.57% overall accuracy and 95.14% kappa coefficient.