摘要:In the Canary Current System (CCS), coherent structures and concurrent movements of surface waters such as meanders, filaments and eddies strongly control the ocean bio-optical proprieties response to the coastal upwelling process. One of the outstanding problems is to understand the mechanisms of the bio-optical proprieties transfer and the connection mechanism between the coastal band and the ocean interior. We use a combination of satellite data and derived mesoscale indicators to provide a comprehensive view of the relationship between the physical and bio-optical proprieties off Moroccan upwelling region (part of the CCS) in terms of wind impulse responsible of sea turbulence, sea surface temperature (SST) response of the wind stress and ocean color proprieties considered as bio-optical ocean proxy response. To optimize the predicted ranges of these parameters, Generalized Additive Model (GAM) was applied. We conclude that the energetic mesoscales structures as seen from the satellite climatology observations can provide insight into dominant transport pathways controlling the bio-optical exchange from the coastal area to the ocean interior structured as an oceanic corridor connecting the Moroccan area to the Canary archipelagos.