期刊名称:Journal of Geoscience and Environment Protection
印刷版ISSN:2327-4336
电子版ISSN:2327-4344
出版年度:2021
卷号:9
期号:7
页码:164-179
DOI:10.4236/gep.2021.97011
语种:English
出版社:Scientific Research Pub
摘要:Mountainous ecosystem soils are subject to colonization nowadays for agricultural purposes due to an increasing population in towns making the detailed characterization of such soils indispensable. This work aims to characterize the steep slopes soils of the Dschang hills and to evaluate their fertility level for agricultural valorization. Thus, four soil profiles were dug at various topographic positions (summit (SP), shoulder (MP), backslope (BP) and footslope (PP)) following a toposequence. Samples of disturbed and undisturbed soils were taken and analyzed in the laboratory according to standard methods. The Fertility Capability Classification (FCC) and simple limitation methods were used to identify major agricultural constraints. The main results show that profiles thickness is moderate, between 0 and 120 cm, with a high sand content (at least 50%) over the entire toposequence, especially at the surface. The study site has four types of soils, namely Eutric Cambisols (ochric) in SP and Leptic Eutric Cambisols (Humic) in MP, Eutric Cambisols (Humic) in BP and Stagnic Oxygleyic Dystric Gleysols (Humic) in pp. The soils are very acidic at PP, moderately acidic at BP and SP and slightly acidic at MP. Organic matter is higher at the surface than at depth at the topographic segments of MP, BP and PP and low to SP. The C/N ratio is high (>17) in all profiles except P4 (<10). In addition, the cation exchange capacity (CEC), the sum of exchangeable bases, total nitrogen and available phosphorus is low in all profiles. The Ca/ Mg/K balance in all the profiles shows a cation imbalance and a relatively high concentration of exchangeable potassium compared to the ideal situation (76% Ca, 18% Mg and 6% K). The major constraints to crop production are: aluminum toxicity (a) and nutrients leaching (e), textural discontinuity (LS), flooding (g), low nutrient reserve (k), sand (S), clay (C) and slope (t). Hence the fertility capacity classes of these soils are CCaegk (PP), SSek (BP), SSte (MP) and LSaek (SP). To improve the yield, it will require off-season crop cultivation, fertilization and liming, and earthworks.
关键词:Steep Slope SoilsFertility Capability ClassificationNutrient BalanceCameroon Western Highlands