首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Performance Investigation of the Effects of Nano-Additive-Lubricants with Cutting Parameters on Material Removal Rate of AL8112 Alloy for Advanced Manufacturing Application
  • 本地全文:下载
  • 作者:Imhade Princess Okokpujie ; Lagouge Kwanda Tartibu
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:15
  • 页码:8406
  • DOI:10.3390/su13158406
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The implementation of nano-additives in machining fluid is significant for manufacturers to attain a sustainable manufacturing process. The material removal rate (MRR) is a significant process of transforming solid raw materials into specific shapes and sizes. This process has many challenges due to friction, vibration, chip discontinuity when machining aluminum alloy, which has led to poor accuracy and affected the fatigue life of the developed material. It is worth noting that aluminum 8112 alloy is currently being applied in most engineering applications due to its lightweight-to-strength ratio compared to some other metals. This research aims to compare the effects of copra oil-based-titanium dioxide (TiO<sub>2</sub>)- and Multi-walled Carbon Nanotubes (MWCNTs)-nano-lubricant with cutting parameter interactions by conducting a study on MRR for advanced machining of aluminum 8112 alloys. The biodegradable nano-additive-lubricants were developed using two-step preparation techniques. The study employed a quadratic rotatable central composite design (QRCCD) to carry out the interaction study of the five machining parameters in the three lubrication environments on MRR. The results show that the copra-based-TiO<sub>2</sub> nano-lubricant increases the MRR by 7.5% and 16% than the MWCNTs and copra-oil-lubrication machining environments, respectively. In conclusion, the eco-friendly nano-additive-lubricant TiO<sub>2</sub>-Copra oil-based should be applied to manufacture machine parts for high entropy applications for sustainable production systems.
国家哲学社会科学文献中心版权所有