首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Classification of Javanese Script Hanacara Voice Using Mel Frequency Cepstral Coefficient MFCC and Selection of Dominant Weight Features
  • 本地全文:下载
  • 作者:Heriyanto Heriyanto ; Tenia Wahyuningrum ; Gita Fadila Fitriana
  • 期刊名称:Jurnal INFOTEL
  • 印刷版ISSN:2085-3688
  • 出版年度:2021
  • 卷号:13
  • 期号:2
  • 页码:84-93
  • DOI:10.20895/infotel.v13i2.657
  • 语种:Indonesian
  • 出版社:LPPM ST3 Telkom
  • 摘要:This study investigates the sound of Hanacaraka in Javanese to select the best frame feature in checking the reading sound. Selection of the right frame feature is needed in speech recognition because certain frames have accuracy at their dominant weight, so it is necessary to match frames with the best accuracy. Common and widely used feature extraction models include the Mel Frequency Cepstral Coefficient (MFCC). The MFCC method has an accuracy of 50% to 60%. This research uses MFCC and the selection of Dominant Weight features for the Javanese language script sound Hanacaraka which produces a frame and cepstral coefficient as feature extraction. The use of the cepstral coefficient ranges from 0 to 23 or as many as 24 cepstral coefficients. In comparison, the captured frame consists of 0 to 10 frames or consists of eleven frames. A sound sampling of 300 recorded voice sampling was tested on 300 voice recordings of both male and female voice recordings. The frequency used is 44,100 kHz 16-bit stereo. The accuracy results show that the MFCC method with the ninth frame selection has a higher accuracy rate of 86% than other frames.
国家哲学社会科学文献中心版权所有