摘要:The emerging environmental consequences of overdependence on fossil fuels have pushed many countries to invest in clean and renewable sources of power. Countries like Iran where these sources can be found in abundance can take advantage of this potential to reduce their dependence on fossil fuels. This study investigated the feasibility of the standalone use of a hybrid renewable energy system (HRES) to power buildings in the Bostegan village in the Hormozgan province of Iran. Technical, economic, and environmental assessments were performed with the help of the Hybrid Optimization of Multiple Energy Resources (HOMER) software, and the optimal configuration for the system components was determined accordingly. The results showed that the simultaneous use of wind and solar systems with a converter and a backup system comprised of a diesel generator and batteries will be the most economic option, offering electricity at a cost of 1.058 USD/kWh and with a renewable fraction of 64%. After selecting the most optimal system using the step-wise weight assessment ratio analysis (SWARA) and weighted aggregated sum product assessment (WASPAS) techniques, a sensitivity analysis with 27 parameter settings was performed to determine the effect of fuel price fluctuations and the uncertainty in the renewable energy potentials on the results. This analysis showed that in the worst-case scenario, the price of electricity will reach as high as 1.343 $/kWh. In the end, the study investigated an alternative scenario where the generated power is used for hydrogen production, which showed that the system output can be used to produce 643.63 ton-H2/year.