首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:refineR: A Novel Algorithm for Reference Interval Estimation from Real-World Data
  • 本地全文:下载
  • 作者:Tatjana Ammer ; André Schützenmeister ; Hans-Ulrich Prokosch
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-95301-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Reference intervals are essential for the interpretation of laboratory test results in medicine. We propose a novel indirect approach to estimate reference intervals from real-world data as an alternative to direct methods, which require samples from healthy individuals. The presented refineR algorithm separates the non-pathological distribution from the pathological distribution of observed test results using an inverse approach and identifies the model that best explains the non-pathological distribution. To evaluate its performance, we simulated test results from six common laboratory analytes with a varying location and fraction of pathological test results. Estimated reference intervals were compared to the ground truth, an alternative indirect method ( kosmic), and the direct method (N = 120 and N = 400 samples). Overall, refineR achieved the lowest mean percentage error of all methods (2.77%). Analyzing the amount of reference intervals within ± 1 total error deviation from the ground truth, refineR (82.5%) was inferior to the direct method with N = 400 samples (90.1%), but outperformed kosmic (70.8%) and the direct method with N = 120 (67.4%). Additionally, reference intervals estimated from pediatric data were comparable to published direct method studies. In conclusion, the refineR algorithm enables precise estimation of reference intervals from real-world data and represents a viable complement to the direct method.
国家哲学社会科学文献中心版权所有