期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:32
DOI:10.1073/pnas.2016913118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Global mangrove deforestation and degradation drive the loss of the associated invertebrate fauna vital to ecosystem services. The functional diversity and resilience of this fauna has not been assessed. We show that even small mangrove patches host functionally diverse faunal assemblages and can act as biodiversity reservoirs. However, globally, functional redundancy of mangrove invertebrates (i.e., the average number of species performing a similar functional role in an assemblage) is extremely low, except in Southeast Asia. Thus, even a modest local loss of invertebrate diversity will have significant negative consequences for mangrove functionality and resilience. Current approaches to assess threats to mangroves heavily rely on loss in areal extent, but our results suggest that loss of function may be more vulnerable.
Deforestation results in habitat fragmentation, decreasing diversity, and functional degradation. For mangroves, no data are available on the impact of deforestation on the diversity and functionality of the specialized invertebrate fauna, critical for their functioning. We compiled a global dataset of mangrove invertebrate fauna comprising 364 species from 16 locations, classified into 64 functional entities (FEs). For each location, we calculated taxonomic distinctness (Δ+), functional richness (FRi), functional redundancy (FRe), and functional vulnerability (FVu) to assess functional integrity. Δ+ and FRi were significantly related to air temperature but not to geomorphic characteristics, mirroring the global biodiversity anomaly of mangrove trees. Neither of those two indices was linked to forest area, but both sharply decreased in human-impacted mangroves. About 60% of the locations showed an average FRe < 2, indicating that most of the FEs comprised one species only. Notable exceptions were the Eastern Indian Ocean and west Pacific Ocean locations, but also in this region, 57% of the FEs had no redundancy, placing mangroves among the most vulnerable ecosystems on the planet. Our study shows that despite low redundancy, even small mangrove patches host truly multifunctional faunal assemblages, ultimately underpinning their services. However, our analyses also suggest that even a modest local loss of invertebrate diversity could have significant negative consequences for many mangroves and cascading effects for adjacent ecosystems. This pattern of faunal-mediated ecosystem functionality is crucial for assessing the vulnerability of mangrove forests to anthropogenic impact and provides an approach to planning their effective conservation and restoration.