期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:28
DOI:10.1073/pnas.2100145118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Active suspensions of microswimmers demonstrate novel emergent behaviors (self-organizations, active turbulence, etc.) on macroscopic length scales. For such systems with, minimally, thousands of microswimmers, direct numerical simulations of the hydrodynamic interactions are computationally infeasible, and reduced models are needed. We demonstrated that existing models are not satisfactory in describing the hydrodynamic interactions for microswimmers in close proximity with even qualitatively erroneous predictions, indicating a pressing need for an adequate model. We propose a model that is both physically effective and computationally efficient in describing such hydrodynamics. The main novelty of our model is the description of hydrodynamic interactions through a resistance tensor, as opposed to an effective steric interaction in existing models.
Near-field hydrodynamic interactions in active fluids are essential to determine many important emergent behaviors observed, but have not been successfully modeled so far. In this work, we propose an effective model capturing the essence of the near-field hydrodynamic interactions through a tensorial coefficient of resistance, validated numerically by a pedagogic model system consisting of an
Escherichia coli bacterium and a passive sphere. In a critical test case that studies the scattering angle of the bacterium–sphere pair dynamics, we prove that the near-field hydrodynamics can make a qualitative difference even for this simple two-body system: Calculations based on the proposed model reveal a region in parameter space where the bacterium is trapped by the passive sphere, a phenomenon that is regularly observed in experiments but cannot be explained by any existing model. In the end, we demonstrate that our model also leads to efficient simulation of active fluids with tens of thousands of bacteria, sufficiently large for investigations of many emergent behaviors.
关键词:enbacterial motion;near-field hydrodynamics;low Reynolds number fluid