摘要:We consider the model of the Finnish high-voltage power grid in 1978–1979, for which the accurate parameters are available for calculating geomagnetically induced currents (GIC). Moving the grid at different locations across Europe gives estimates of GIC levels in this region. For calculating the geoelectric field driving GIC, we use different layered models of the ground conductivity and 1 min geomagnetic data of the year 2003. The results show a clear concentration of large GIC in north Europe, where the peak values are about 3–5 times larger than in Central and South Europe, being up to about 200 A in this specific power grid. There are two factors contributing to this finding. First, geomagnetic variations are generally stronger in the north. Second, there are regions in the north with clearly smaller ground conductivities than typically at other areas. Both of these reasons lead to larger electric fields in the north. A very similar behavior of GIC is found in the case when a single-layered ground conductivity model is assumed everywhere. We also show that the geographic characteristics of GIC are quite insensitive to the details of the power grid model by modifying various parameters of the Finnish grid.