摘要:The surface electric field induced by external geomagnetic source fields is modeled for a continental-scale 3-D electrical conductivity model of Australia at periods of a few minutes to a few hours. The amplitude and orientation of the induced electric field at periods of 360 s and 1800 s are presented and compared to those derived from a simplified ocean-continent (OC) electrical conductivity model. It is found that the induced electric field in the Australian region is distorted by the heterogeneous continental electrical conductivity structures and surrounding oceans. On the northern coastlines, the induced electric field is decreased relative to the simple OC model due to a reduced conductivity contrast between the seas and the enhanced conductivity structures inland. In central Australia, the induced electric field is less distorted with respect to the OC model as the location is remote from the oceans, but inland crustal high-conductivity anomalies are the major source of distortion of the induced electric field. In the west of the continent, the lower conductivity of the Western Australia Craton increases the conductivity contrast between the deeper oceans and land and significantly enhances the induced electric field. Generally, the induced electric field in southern Australia, south of latitude −20°, is higher compared to northern Australia. This paper provides a regional indicator of geomagnetic induction hazards across Australia.